Functional Blocks: Addition

= Binary addition used frequently

= Addition Development:
* Half-Adder (HA), a 2-input bit-wise addition
functional block,
* Full-Adder (FA), a 3-input bit-wise addition
functional block,

* Ripple Carry Adder, an iterative array to
perform binary addition, and

* Carry-Look-Ahead Adder (CLA), a
hierarchical structure to improve
performance.

Chapter 5 19

Functional Block: Half-Adder

" A 2-input, 1-bit width binary adder that performs the

following computations:

X 0
tY 40
CS 00

= A half adder adds two bits to produce a two-bit sum

* The sum is expressed as a
sum bit, S and a carry bit, C

= The half adder can be specified
as a truth table for S and C =

0 1 1
1 0+
01 01 10
X Y|C S
0 0] 0 0
0 1] 0 1
1 0|0 1
1 1|1 0

Chapter 5 20

Logic Simplification: Halt-Adder

= The K-Map for S, C is: S Y C %
= This is a pretty trivial map! 1
By inspection: 1

S=X'Y+X Y=XO®Y
S=(X+Y) (X+Y)

= and

C

]
s
=<

C ((X ‘Y))

Chapter 5 21

Implementations: Half-Adder

= The most common half

adder implementation is: % ? T)D—S (e)
S=XO®Y ;Di C
C=X-Y

* A NAND only implementation is:
>

S=(X+Y)-C]
C =((X'Y)) D—o S
Y o

Chapter 5 22

Functional Block: Full-Adder

= A full adder is similar to a half adder, but includes a
carry-in bit from lower stages. Like the half-adder, it

computes a sum bit, S and a carry bit, C.

* For a carry-in (Z) of
0, it is the same as
the half-adder:

* For a carry- in
(Z) of 1:

Z 0
X 0
+Y +0
CS 00
Z 1
X 0
+Y +0
CS 01

S |+
il i —

+
_— O =

—
&

0 0
11
+0 1
01 10
11
11
+0 1
10 11

Chapter 5 23

Logic Optimization: Full-Adder

* Full-Adder Truth Table: XY z|l c s
0 0 0/ 0 0
0 0 1|0 1
0 1 0| 0 1
0 1 1|1 0
1 0 0| 0 1
1 0 1|1 0
* Full-Adder K-Map: 1 1 0f1 0
1 1 111 1
S Y C Y
1 1 1
0 1 3 2 0 1 3 2
X 14 5 17 6 X 4 1 3
Z Z

Chapter 5 24

Equations: Full-Adder

* From the K-Map, we get:

S=XYZ+XY Z+XYZ+XYZ
C=XY+XZ+YZ
* The S function is the three-bit XOR function (Odd
Function):
S=X0YDZ

= The Carry bit Cis 1 if both X and Y are 1 (the sum is
2), or if the sum is 1 and a carry-in (Z) occurs. Thus C
can be re-written as:

C=XY+(X®PY)Z

* The term X'Y is carry generate.

* The term X®Y is carry propagate.

Chapter 5 25

Implementation: Full Adder

= Full Adder Schematic AiBi

= HereX, Y, and Z, and C GI—GZ
(from the previous pages) -
are A, B, C; and C,,
respectively. Also,

G = generate and
P = propagate. =
= Note: This is really a combination

of a 3-bit odd function (for S)) and
Carry logic (for C)): Citi S

(G = Generate) OR (P =Propagate AND C, = Carry In)
Co=G+P-Ci

Chapter 5 26

Binary Adders

* To add multiple operands, we “bundle” logical signals
together into vectors and use functional blocks that

operate on the vectors

Description |Subscript | Name
= Example: 4-bit ripple carry 3210
adder: Adds input vectors Carry In 0110 C;
A(30) and B(3:O) to get Augend 1011 A,
a sum vector S(3:0) Addend 0011 B.
= Note: carry out of cell i Sum 1110 S
becomes carry in of cell Carry out 0011 |C,,
i+1

Chapter 5

27

4-bit Ripple-Carry Binary Adder

" A four-bit Ripple Carry Adder made from four
1-bit Full Adders:

lFAl<C—3lFAl<C—2lFAl<LlFAl<—CO
T

Chapter 5 28

Carry Propagation & Delay

= One problem with the addition of binary numbers is
the length of time to propagate the ripple carry from
the least significant bit to the most significant bit.

= The gate-level propagation path for a 4-bit ripple carry
adder of the last example:

= Note: The "long path" is from A, or B, though the
circuit to S;.

Chapter 5 29

Carry Lookahead

= Given Stage i from a Full Adder, we know that
there will be a carry generated when A, = B, =
"1", whether or not there is a carry-in. , o

" Alternately, there will be ik

G;
a carry propagated if the 4@—.

—

“half-sum™ is ""1" and a =
carry-in, C; occurs.

" These two signal conditions I:i
are called generate, denoted = :
as G;, and propagate, denoted
as P; respectively and are

identified in the circuit: C., S.

Chapter 5 30

Carry Lookahead (continued)

= In the ripple carry adder:
* Gi, Pi, and Si are local to each cell of the adder
« Ciis also local each cell

= In the carry lookahead adder, in order to reduce the
length of the carry chain, Ci is changed to a more
global function spanning multiple cells

= Defining the equations for the Full Adder in term of the
P. and G;:
PizAi@Bi GizAiBi

S; =P, ®C; Cir1 =G+ P G

Chapter 5 31

Carry Lookahead Development

= C,,; can be removed from the cells and used to
derive a set of carry equations spanning
multiple cells.

= Beginning at the cell 0 with carry in C:
C, =Gyt P, C
C, =G, +P, (= G +P(Gy + Py Cy)
=G, +P,G,+P,P,C,
C;=G,+P,C,= G, + PG, +P,G,+P,P,C))
=G, +P,G, +P,P,G,+P,P,P,C,
Cy=G3+ Py G5 =G5 + P3G, + P3P,G,
+ P,P,P.G, + P,P,P. P, C,

Chapter 5 32

Group Carry Lookahead Logic

= Figure 5-6 in the text shows shows the implementation of
these equations for four bits. This could be extended to more
than four bits; in practice, due to limited gate fan-in, such
extension is not feasible.

= Instead, the concept is extended another level by considering
group generate (G, ;) and group propagate (P, ;) functions:

Go-3=G3+tP;G, P3P, G +P3 P, Py Py Gy
Po—3 =P; P, P Py
= Using these two equations:
Cqy=Go—3t P3G
= Thus, it is possible to have four 4-bit adders use one of the
same carry lookahead circuit to speed up 16-bit addition

Chapter 5 33

Carry Lookahead Example

" Specifications:

» 16-bit CLA "CLA |
* Delays:
* NOT =1
= XOR = Isolated AND =3
= AND-OR =2

= Longest Delays:
* Ripple carry adder* =3 +15x2+3 =36
*cCLA=3+3x2+3=12

*See slide 16 Chapter 5 34

Unsigned Subtraction

= Algorithm:
* Subtract the subtrahend N from the minuend M

* If no end borrow occurs, then M > N, and the result
is a non-negative number and correct.

e If an end borrow occurs, the N > M and the
difference M — N + 2n is subtracted from 2n, and a
minus sign is appended to the result.

. E los: © 1
Xampies: 1001 0100
— 0111 —-0111

0010 1101

10000

- 1101

(=) 0011

Chapter 5 35

Unsigned Subtraction (continued)

" The subtraction, 2" — N, is taking the 2’s
complement of N

* To do both unsigned addAition and unsigned
subtraction requires:

= Q“ite compleX! YYYY YYVYY YYY YYYY

Binary adder Borrow Binary subtractor

= Goal: Shared simpler
logic for both addition 1)
and subtraction Selective

Complement| 2's complementer

* Introduce complements 3

as an approach SubtracUAdd | 0 1

g Quadruple 2-to-1
multiplexer

Yy

Result Chapter 5 36

Binary 2's Complement

= Forr=2, N=01110011,, » = 8 (8 digits),
we have:

(r")=256,, or 100000000,
" The 2's complement of 01110011 is then:

100000000

— 01110011
10001101

" Note the result is the 1's complement plus
1, a fact that can be used in designing
hardware

Chapter 5 37

Subtraction with 2°s Complement

" For n-digit, unsigned numbers M and N, find M
— N in base 2:

* Add the 2's complement of the subtrahend N to
the minuend M:
M+Q2"-N)=M-N+2"
 If M > N, the sum produces end carry r" which is
discarded; from above, M — N remains.

 If M <N, the sum does not produce an end carry
and, from above, is equal to 2" — (N — M), the 2's
complement of (N — M).

* To obtain the result — (N — M), take the 2's
complement of the sum and place a — to its left.

Chapter 5 38

Unsigned 2’s Complement Subtraction Example 1

* Find 01010100, — 01000011,

01010100 101010100
— 01000011 2’s comp + 10111101
00010001

" The carry of 1 indicates that no
correction of the result is required.

Chapter 5 39

2’s Complement Adder/Subtractor

= Subtraction can be done by addition of the 2's Complement.
1. Complement each bit (1's Complement.)
2. Add 1 to the result.

= The circuit shown computes A + B and A — B:

= For S =1, subtract,
the 2°s complement
of B is formed by using

XORs to form the 1’°s
comp and adding the 1|
applied to C,.

Y

A
-n
>
A

A

A

= For S=0, add, B is FA FA FA
passed through r i | | |

unchanged C.. 5 % %
Chapter 5 40

Overflow Detection

" Qverflow occurs if n + 1 bits are required to contain the
result from an n-bit addition or subtraction

= Overflow can occur for:
* Addition of two operands with the same sign
* Subtraction of operands with different signs

= Signed number overtlow cases with correct result sign

0 0 1 1
+0 -1 -0 +1
0 0 1 1

= Detection can be performed by examining the result
signs which should match the signs of the top operand

Chapter 5 41

Overflow Detection

= Signed number cases with carries C, and C,_; shown for correct
result signs:
0 00 01 11 1

0 0 1 1
+0 -1 -0 +1
0 0 1 1

= Signed number cases with carries shown for erroneous result signs
(indicating overflow):
0 10 11 01 0

0 0 1 1
+0 -1 0 +1
1 1.0 0

= Simplest way to implement overflow V'=C,®C, _,

" This works correctly only if 1’s complement and the addition of the
carry in of 1 is used to implement the complementation! Otherwise
fails for — 10 ... 0

Chapter 5 42

Binary Multiplication

= The binary digit multiplication table is
trivial:

(a X b) b=0 b=1
a=0 0 0
a=1 0 1
" This is simply the Boolean AND
function.

" Form larger products the same way we
form larger products in base 10.

Chapter 5 43

Review - Decimal Example: (237 x 149),,

= Partial products are: 237 x 9, 237 x 4,
and 237 x 1

2 3 7

= Note that the partial product x 1 4 9
summation for » digit, base 10 , ; 3 3
numbers requires addingup o , o _
to n digits (with carries). s 3 07 . .

" Note also n x m digit 3 5 3 1 3

multiply generates up
to an m + n digit result.

Chapter 5 44

Binary Multiplication Algorithm

" We execute radix 2 multiplication by:
* Computing partial products, and

» Justifying and summing the partial products. (same as
decimal)

= To compute partial products:

* Multiply the row of multiplicand digits by each
multiplier digit, one at a time.

* With binary numbers, partial products are very
simple! They are either:

= all zero (if the multiplier digit is zero), or
= the same as the multiplicand (if the multiplier digit is one).

= Note: No carries are added in partial product
formation!

Chapter 5 45

Example: (101 x 011) Base 2

= Partial products are: 101 x1, 101 x 1,

and 101 x 0

= Note that the partial product
summation for n digit, base 2
numbers requires adding up

to n digits (with carries) in

a column.

0

1
0

S o 1O e

- |~ &

= Note also n x m digit

0

0

1

1

1 1

multiply generates up to an m + n digit

result (same as decimal).

Chapter 5 46

Multiplier Boolean Equations

"= We can also make an n x m “block” multiplier
and use that to form partial products.

= Example: 2 x 2 —The logic equations for each
partial-product binary digit are shown below:

" We need to ""add" the columns to get
the product bits PO, P1, P2, and P3. p, b,

= Note that some X a, a
columns may (3p-by) (2y- by)
+ (a;-b;) (a;-by)

generate carries. P, P, P, P,

Chapter 5 47

Multiplier Arrays Using Adders

" An implementation of the 2 x 2

° ° [AO
multiplier array is g By
shown: d
Ay
B, B,
' k? '
HA HA
=l
C; G C Co

Chapter 5 48

