Functional Blocks: Addition

- Binary addition used frequently
- Addition Development:
 - Half-Adder (HA), a 2-input bit-wise addition functional block,
 - Full-Adder (FA), a 3-input bit-wise addition functional block,
 - Ripple Carry Adder, an iterative array to perform binary addition, and
 - Carry-Look-Ahead Adder (CLA), a hierarchical structure to improve performance.

Functional Block: Half-Adder

 A 2-input, 1-bit width binary adder that performs the following computations:

- A half adder adds two bits to produce a two-bit sum
- The sum is expressed as a sum bit, S and a carry bit, C
- The half adder can be specified as a truth table for S and $C \Rightarrow$

X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Logic Simplification: Half-Adder

- The K-Map for S, C is:
- This is a pretty trivial map!By inspection:

$$S = X \cdot \overline{Y} + \overline{X} \cdot Y = X \oplus Y$$

$$S = (X + Y) \cdot \overline{(X + Y)}$$

and

$$C = X \cdot Y$$

$$C = \overline{(X \cdot Y)}$$

Implementations: Half-Adder

The most common half adder implementation is:

$$\mathbf{S} = \mathbf{X} \oplus \mathbf{Y}$$
$$\mathbf{C} = \mathbf{X} \cdot \mathbf{Y}$$

A NAND only implementation is:

$$S = (X + Y) \cdot C$$

$$C = ((X \cdot Y))$$

Functional Block: Full-Adder

- A full adder is similar to a half adder, but includes a carry-in bit from lower stages. Like the half-adder, it computes a sum bit, S and a carry bit, C.
 - For a carry-in (Z) of 0, it is the same as the half-adder:
 - For a carry- in(Z) of 1:

Logic Optimization: Full-Adder

Full-Adder Truth Table:

X	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full-Adder K-Map:

Equations: Full-Adder

From the K-Map, we get:

$$S = XYZ + XYZ + XYZ + XYZ$$

$$C = XY + XZ + YZ$$

The S function is the three-bit XOR function (Odd Function):

$$S = X \oplus Y \oplus Z$$

The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or if the sum is 1 and a carry-in (Z) occurs. Thus C can be re-written as:

$$\mathbf{C} = \mathbf{X} \, \mathbf{Y} + (\mathbf{X} \oplus \mathbf{Y}) \, \mathbf{Z}$$

- The term X·Y is carry generate.
- The term $X \oplus Y$ is carry propagate.

Implementation: Full Adder

- Full Adder Schematic
- Here X, Y, and Z, and C (from the previous pages) are A, B, C_i and C_o, respectively. Also,

G = generate and P = propagate.

 Note: This is really a combination of a 3-bit odd function (for S)) and Carry logic (for C_o):

(G = Generate) OR (P = Propagate AND C_i = Carry In) $C_0 = G + P \cdot C_i$

Binary Adders

 To add multiple operands, we "bundle" logical signals together into vectors and use functional blocks that operate on the vectors

Example: 4-bit ripple carry adder: Adds input vectors
 A(3:0) and B(3:0) to get a sum vector S(3:0)

 Note: carry out of cell i becomes carry in of cell i + 1

Description	Subscript 3 2 1 0	Name
Carry In	0110	C_{i}
Augend	1011	$\mathbf{A_i}$
Addend	0011	B _i
Sum	1110	S _i
Carry out	0011	C_{i+1}

4-bit Ripple-Carry Binary Adder

 A four-bit Ripple Carry Adder made from four 1-bit Full Adders:

Carry Propagation & Delay

- One problem with the addition of binary numbers is the length of time to propagate the ripple carry from the least significant bit to the most significant bit.
- The gate-level propagation path for a 4-bit ripple carry adder of the last example:

• Note: The "long path" is from A_0 or B_0 though the circuit to S_3 .

Carry Lookahead

- Given Stage i from a Full Adder, we know that there will be a <u>carry generated</u> when $A_i = B_i =$ "1", whether or not there is a carry-in. $_{\Delta,R}$
- Alternately, there will be a <u>carry propagated</u> if the "half-sum" is "1" and a carry-in, C_i occurs.
- These two signal conditions are called generate, denoted as G_i, and propagate, denoted as P_i respectively and are identified in the circuit:

Carry Lookahead (continued)

- In the ripple carry adder:
 - Gi, Pi, and Si are <u>local</u> to each cell of the adder
 - Ci is also local each cell
- In the carry lookahead adder, in order to reduce the length of the carry chain, Ci is changed to a more global function spanning multiple cells
- Defining the equations for the Full Adder in term of the P_i and G_i:

$$P_{i} = A_{i} \oplus B_{i}$$

$$G_{i} = A_{i} B_{i}$$

$$S_{i} = P_{i} \oplus C_{i}$$

$$C_{i+1} = G_{i} + P_{i} C_{i}$$

Carry Lookahead Development

- C_{i+1} can be removed from the cells and used to derive a set of carry equations spanning multiple cells.
- Beginning at the cell 0 with carry in C_0 :

$$\begin{split} &C_1 = G_0 + P_0 \ C_0 \\ &C_2 = G_1 + P_1 \ C_1 = \ G_1 + P_1 (G_0 + P_0 \ C_0) \\ &= G_1 + P_1 G_0 + P_1 P_0 \ C_0 \\ &C_3 = G_2 + P_2 \ C_2 = \ G_2 + P_2 (G_1 + P_1 G_0 + P_1 P_0 \ C_0) \\ &= G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 \ C_0 \\ &C_4 = G_3 + P_3 \ C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 \\ &+ P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 \ C_0 \end{split}$$

Group Carry Lookahead Logic

- Figure 5-6 in the text shows shows the implementation of these equations for four bits. This could be extended to more than four bits; in practice, due to limited gate fan-in, such extension is not feasible.
- Instead, the concept is extended another level by considering group generate (G_{0-3}) and group propagate (P_{0-3}) functions:

$$G_{0-3} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 P_0 G_0$$

$$P_{0-3} = P_3 P_2 P_1 P_0$$

Using these two equations:

$$C_4 = G_{0-3} + P_{0-3} C_0$$

 Thus, it is possible to have four 4-bit adders use one of the same carry lookahead circuit to speed up 16-bit addition

Carry Lookahead Example

Specifications: 31

- 16-bit CLA
- Delays:
 - $\mathbf{NOT} = 1$

- \blacksquare AND-OR = 2
- Longest Delays:
 - Ripple carry adder* = $3 + 15 \times 2 + 3 = 36$
 - $CLA = 3 + 3 \times 2 + 3 = 12$

Unsigned Subtraction

• Algorithm:

- Subtract the subtrahend N from the minuend M
- If no end borrow occurs, then $M \ge N$, and the result is a non-negative number and correct.
- If an end borrow occurs, the N > M and the difference M N + 2n is subtracted from 2n, and a minus sign is appended to the result.

Examples:

U	1
1001	0100
- <u>0111</u>	- <u>0111</u>
0010	1101
	10000
	- 1101
	(-) 0011

Unsigned Subtraction (continued)

■ The subtraction, 2ⁿ − N, is taking the 2's complement of N

To do both unsigned addition and unsigned

subtraction requires:

• Quite complex!

Goal: Shared simpler | logic for both addition and subtraction

Introduce complements as an approach

Binary 2's Complement

For r = 2, $N = 01110011_2$, n = 8 (8 digits), we have:

$$(r^n) = 256_{10} \text{ or } 100000000_2$$

The 2's complement of 01110011 is then:

100000000

- $\frac{01110011}{10001101}$
- Note the result is the 1's complement plus 1, a fact that can be used in designing hardware

Subtraction with 2's Complement

- For n-digit, <u>unsigned</u> numbers M and N, find M
 - N in base 2:
 - Add the 2's complement of the subtrahend N to the minuend M:

$$M + (2^n - N) = M - N + 2^n$$

- If $M \ge N$, the sum produces end carry r^n which is discarded; from above, M N remains.
- If M < N, the sum does not produce an end carry and, from above, is equal to $2^n (N M)$, the 2's complement of (N M).
- To obtain the result -(N-M), take the 2's complement of the sum and place a-to its left.

Unsigned 2's Complement Subtraction Example 1

• Find 01010100₂ - 01000011₂

 The carry of 1 indicates that no correction of the result is required.

2's Complement Adder/Subtractor

Subtraction can be done by addition of the 2's Complement.

 B_2

- 1. Complement each bit (1's Complement.)
- 2. Add 1 to the result.
- The circuit shown computes A + B and A B:
- For S = 1, subtract, the 2's complement of B is formed by using XORs to form the 1's comp and adding the 1 applied to C_0 .
- For S = 0, add, B is passed through unchanged

Overflow Detection

- Overflow occurs if n + 1 bits are required to contain the result from an n-bit addition or subtraction
- Overflow can occur for:
 - Addition of two operands with the same sign
 - Subtraction of operands with different signs
- Signed number overflow cases with correct result sign

 Detection can be performed by examining the result signs which should match the signs of the top operand

Overflow Detection

• Signed number cases with carries C_n and C_{n-1} shown for correct result signs:

Signed number cases with carries shown for erroneous result signs (indicating overflow):

- Simplest way to implement overflow $V = C_n \oplus C_{n-1}$
- This works correctly only if 1's complement and the addition of the carry in of 1 is used to implement the complementation! Otherwise fails for $-10 \dots 0$

Binary Multiplication

The binary digit multiplication table is trivial:

$$(a \times b)$$
 $b = 0$ $b = 1$
 $a = 0$ 0 0
 $a = 1$ 0 1

- This is simply the Boolean AND function.
- Form larger products the same way we form larger products in base 10.

Review - Decimal Example: $(237 \times 149)_{10}$

• Partial products are: 237×9 , 237×4 , and 237×1 3 Note that the partial product × 1 summation for *n* digit, base 10 2 1 3 3 numbers requires adding up to *n* digits (with carries). • Note also $n \times m$ digit 5 3 1 multiply generates up to an m + n digit result.

Binary Multiplication Algorithm

- We execute radix 2 multiplication by:
 - Computing partial products, and
 - Justifying and summing the partial products. (same as decimal)
- To compute partial products:
 - Multiply the row of multiplicand digits by each multiplier digit, one at a time.
 - With binary numbers, partial products are very simple! They are either:
 - all zero (if the multiplier digit is zero), or
 - the same as the multiplicand (if the multiplier digit is one).
- Note: No carries are added in partial product formation!

Example: (101 x 011) Base 2

- Partial products are: 101 × 1, 101 × 1, and 101 × 0
- Note that the partial product summation for *n* digit, base 2 numbers requires adding up to *n* digits (with carries) in a column.

Note also $n \times m$ digit $0 \ 0 \ 1 \ 1 \ 1$ multiply generates up to an m + n digit result (same as decimal).

Multiplier Boolean Equations

- We can also make an $n \times m$ "block" multiplier and use that to form partial products.
- Example: 2 × 2 The logic equations for each partial-product binary digit are shown below:
- We need to "add" the columns to get the product bits P0, P1, P2, and P3.
- Note that some columns may generate carries.

 $\mathbf{b_0}$

Multiplier Arrays Using Adders

• An implementation of the 2×2 multiplier array is shown:

